LHome > FAQ
FAQ

2016-02-02

Apparatus

The apparatus used in gas welding consists basically of an oxygen source and a fuel gas source (usually cylinders), two pressure regulators and two flexible hoses (one of each for each cylinder), and a torch. This sort of torch can also be used for soldering and brazing. The cylinders are often carried in a special wheeled trolley.
There have been examples of oxyhydrogen cutting sets with small (scuba-sized) gas cylinders worn on the user's back in a backpack harness, for rescue work and similar.
There are also examples of pressurized liquid fuel cutting torches, usually using gasoline. These are used for their increased portability.
Regulator

Main article: Pressure regulator

The regulator is used to control pressure from the tanks to the required pressure in the hose. The flow rate is then adjusted by the operator using needle valves on the torch. Accurate flow control with a needle valve relies on a constant inlet pressure to it.

Most regulators have two stages: the first stage of the regulator is a fixed-pressure regulator whose function is to release the gas from the cylinder at a constant intermediate pressure, despite the pressure in the cylinder falling as the gas in the cylinder is used. This is similar to the first stage of a scuba-diving regulator. The adjustable second stage of the regulator controls the pressure reduction from the intermediate pressure to the low outlet pressure. The regulator has two pressure gauges, one indicating cylinder pressure, the other indicating hose pressure. The adjustment knob of the regulator is sometimes roughly calibrated for pressure, but an accurate setting requires observation of the gauge.
Some simpler or cheaper oxygen-fuel regulators have only a single stage regulator, or only a single gauge. A single-stage regulator will tend to reduce its outlet pressure as the cylinder is emptied, requiring manual readjustment. For low-volume users, this is an acceptable simplification. Welding regulators, unlike simpler LPG heating regulators, retain their outlet (hose) pressure gauge and do not rely on the calibration of the adjustment knob. The cheaper single-stage regulators may sometimes omit the cylinder contents gauge, or replace the accurate dial gauge with a cheaper and less precise "rising button" gauge.

Gas hoses

The hoses are specifically designed for welding and cutting metal. The hose is usually a double-hose design, meaning that there are two hoses joined together. These hoses are color-coded for visual identification and their threaded connectors are handed to avoid accidental mis-connection: oxygen is right-handed as normal, fuel gases use a left-handed thread. These left-handed threads also have an identifying groove cut into their nuts.

Color-coding of hoses varies between countries. In the USA, oxygen is green, and the fuel hose is red.In the UK, the oxygen hose is blue (black hoses may still be found on old equipment), and the acetylene fuel hose is red. Where LPG fuel, such as propane, is used, the fuel hose should be orange, indicating that it is compatible with LPG. LPG will damage an incompatible hose, including most acetylene hoses.

Connections between flexible hoses and rigid fittings are made by a crimped hose clip over a barbed spigot. Often referred to as 'O' clips. The use of worm-drive or Jubilee clips is specifically forbidden in the UK. The hoses should also be clipped together at intervals approximately 3 feet apart. (Not recommended for cutting applications. Because beads of molten metal given off by the process can become lodged between the hoses where they are held together, and burn through releasing the pressurised gas inside, which in the case of fuel gas usually ignites).

Non-return valve

Acetylene is not just flammable, in certain conditions it is also an explosive. Although it has an upper flammability limit in air of 81%,[5] acetylene's explosive decomposition behaviour makes this irrelevant. If a detonation wave enters the acetylene tank, the tank will be blown apart by the decomposition. Ordinary check valves that normally prevent back flow can not stop a detonation wave as they are not capable of closing before the wave passes around the gate, and for that reason a flashback arrestor is needed. It is designed to operate before the detonation wave makes it from the hose side to the supply side.

Between the regulator and hose, and ideally between hose and torch on both oxygen and fuel lines, a flashback arrestor and/or non-return valve (check valve) should be installed to prevent flame or oxygen-fuel mixture being pushed back into either cylinder and damaging the equipment or making a cylinder explode.
European practice is to fit flashback arrestors at the regulator and check valves at the torch. US practice is to fit both at the regulator.
The flashback arrestor (not to be confused with a check valve) prevents the shock waves from downstream coming back up the hoses and entering the cylinder (possibly rupturing it), as there are quantities of fuel/oxygen mixtures inside parts of the equipment (specifically within the mixer and blowpipe/nozzle) that may explode if the equipment is incorrectly shut down; and acetylene decomposes at excessive pressures or temperatures. The flashback arrestor will remain switched off until someone resets it, in case the pressure wave created a leak downstream of the arrestor.

Check valve

A check valve lets gas flow in one direction only. Not to be confused with a flashback arrestor, a check valve is not designed to block a shock wave. The pressure wave could occur while the ball is so far from the inlet that the pressure wave gets past before the ball reaches its off position. A check valve is usually a chamber containing a ball that is pressed against one end by a spring: gas flow one way pushes the ball out of the way, and no flow or flow the other way lets the spring push the ball into the inlet, blocking it.
Torches

The torch is the part that the welder holds and manipulates to make the weld. It has a connection and valve for the fuel gas and a connection and valve for the oxygen, a handle for the welder to grasp, a mixing chamber (set at an angle) where the fuel gas and oxygen mix, with a tip where the flame forms.

The top torch is a welding torch and the bottom is a cutting torch

Welding torch

A welding torch head is used to weld metals. It can be identified by having only one or two pipes running to the nozzle and no oxygen-blast trigger and two valve knobs at the bottom of the handle letting the operator adjust the oxygen flow and fuel flow.


Cutting torch

A cutting torch head is used to cut materials. It is similar to a welding torch, but can be identified by the oxygen blow out trigger or lever.
The metal is first heated by the flame until it is cherry red. Once this temperature is attained, oxygen is supplied to the heated parts by pressing the "oxygen-blast trigger". This oxygen reacts with the metal, forming iron oxide and producing heat. It is this heat that continues the cutting process. The cutting torch only heats the metal to start the process; further heat is provided by the burning metal.

The melting point of the iron oxide is around half that of the metal; as the metal burns, it immediately turns to liquid iron oxide and flows away from the cutting zone. However, some of the iron oxide remains on the workpiece, forming a hard "slag" which can be removed by gentle tapping and/or grinding.

Rose-bud torch

A rose-bud torch is used to heat metals for bending, straightening, etc. where a large area needs to be heated. It is called as such because the flame at the end looks like a rose-bud. A welding torch can also be used to heat small area such as rusted nuts and bolts.

Injector torch

A typical oxy-fuel torch, called an equal-pressure torch, merely mixes the two gases. In an injector torch, high pressure oxygen comes out of a small nozzle inside the torch head so that it drags the fuel gas along with it, via venturi effect.

 
  • 2016-02-02

    Oxy-fuel welding and cutting

    Oxy-fuel welding (commonly called oxyacetylene welding, oxy welding, or gas welding in the U.S.) and oxy-fuel cutting a...

  • 2016-02-02

    Uses

    Oxy-gas torches are or have been used for: * Welding metal: see below. * Cutting metal: see below. * Also, oxy-hydrogen...

  • 2016-02-02

    Apparatus

    The apparatus used in gas welding consists basically of an oxygen source and a fuel gas source (usually cylinders), two...

  • 2016-02-02

    Fuels

    Oxy-fuel processes may use a variety of fuel gases, the most common being acetylene. Other gases that may be used are p...

  • 2016-02-02

    The role of oxygen

    Oxygen is not the fuel. It is what chemically combines with the fuel to produce the heat for welding. This is called 'o...

  • 2016-02-02

    Types of flame

    The welder can adjust the oxy-acetylene flame to be carbonizing (aka reducing), neutral, or oxidizing. Adjustment is ma...

  • 2016-02-02

    Flux-cored arc welding

    Flux-cored arc welding (FCAW or FCA) is a semi-automatic or automatic arc welding process. FCAW requires a continuously...

Thank you for your support and we look forward to being your long-term supplier for welding cutting equipment. We will continue our efforts to offer you great products and support.

Get in touch with us !

DESIGN BY: ZIYUEWEB.COM